Home | About NASC | Address/Staff
Ask a question | Help


The European Arabidopsis Stock Centre

Borevitz natural accession

Donated by

  • Justin Borevitz Department of Ecology and Evolution, Division of Biological Sciences , University of Chicago

Click here to view all 851 of these lines.


Natural accession genotyped with 149 genome-wide SNPs by the Justin Borevitz laboratory (University of Chicago, USA) in a study of genetic diversity and population structure of Arabidopsis thaliana in world-wide collections (see web page below)

Project Outline

Our proposal will investigate the genetic and molecular basis of complex traits and their interactions with the environment using the model plant Arabidopsis thaliana. We will implement a multi use, high density oligo-nucleotide tiling array for whole genome resequencing. The sample will include a largely unstructured core set of 384 wild A. thaliana genomes. This will be used to develop a very high resolution haplotype map, reveal genome wide patterns of variation, and suggest sites under natural selection. The ecologically relevant quantitative trait of flowering time will be measured across two seasonal and two geographic environments which span the native range of A. thaliana. This and future community phenotypic data will be used to develop and test methods for fine scale quantitative trait locus (QTL) association scanning capitalizing on the high density haplotype map. Whole genome association mapping will be developed using coalescent models for detection and fine mapping. We will determine the functional molecular changes underlying at least one QTL utilizing the full power of Arabidopsis genetics. Importantly this proposal will develop new technological inroads for using tiling arrays to generate high density haplotype maps as the foundation for whole genome association studies. These methods, once established, can then be extended to other model systems. The development of fine scale linkage disequilibrium mapping methods will be broadly applicable.

There is a tremendous interest in complex disease association mapping, but much debate over different approaches and little success to date. The studies proposed here in Arabidopsis will suggest successful paths for this daunting undertaking, as associations can be quickly confirmed to identify novel QTL.

Parent stock pages

These lines have been donated by the Justin Borevitz lab. All original donor/originator details are available on the parent nascode stock pages. The parent stock pages also contain phenotype information.

Related links